R/tree_continuous.R
tree_continuous.Rd
Fits models for trait evolution of continuous characters, evaluating phylogenetic uncertainty.
tree_continuous( data, phy, n.tree = 10, model, bounds = list(), n.cores = NULL, track = TRUE, ... )
data | Data vector for a single continuous trait, with names matching tips in |
---|---|
phy | Phylogenies (class 'multiPhylo', see ? |
n.tree | Number of times to repeat the analysis with n different trees picked
randomly in the multiPhylo file. If NULL, |
model | The evolutionary model (see Details). |
bounds | settings to constrain parameter estimates. See |
n.cores | number of cores to use. If 'NULL', number of cores is detected. |
track | Print a report tracking function progress (default = TRUE) |
... | Further arguments to be passed to |
The function tree_continuous
returns a list with the following
components:
call
: The function call
data
: The original full data vector
sensi.estimates
: (rate of evolution sigsq
,
root state z0
and where applicable optpar
),
AICc and the optimised value of the phylogenetic transformation parameter (e.g. lambda
)
for each analysis with a different phylogenetic tree.
N.tree
: Number of trees n.tree
analysed
stats
: Main statistics for model parameters, i.e. minimum, maximum, mean, median and sd-values
optpar
: Evolutionary model used (e.g. lambda
, kappa
etc.)
This function fits different models of continuous character evolution using fitContinuous
to n trees, randomly picked in a multiPhylo file.
Different evolutionary models from fitContinuous
can be used, i.e. BM
,OU
,
EB
, trend
, lambda
, kappa
, delta
and drift
.
See fitContinuous
for more details on character models and tree transformations.
Output can be visualised using sensi_plot
.
Paterno, G. B., Penone, C. Werner, G. D. A. sensiPhy: An r-package for sensitivity analysis in phylogenetic comparative methods. Methods in Ecology and Evolution 2018, 9(6):1461-1467
Yang Z. 2006. Computational Molecular Evolution. Oxford University Press: Oxford.
Harmon Luke J, Jason T Weir, Chad D Brock, Richard E Glor, and Wendell Challenger. 2008. GEIGER: investigating evolutionary radiations. Bioinformatics 24:129-131.
# \dontshow{ #Load data: data("primates") #Model trait evolution accounting for phylogenetic uncertainty adultMass<-primates$data$adultMass names(adultMass)<-rownames(primates$data) tree_cont<-tree_continuous(data = adultMass,phy = primates$phy, model = "OU",n.tree=1,n.cores = 2,track = TRUE)#> | | | 0% | |======================================================================| 100%# } if (FALSE) { #Load data: data("primates") #Model trait evolution accounting for phylogenetic uncertainty adultMass<-primates$data$adultMass names(adultMass)<-rownames(primates$data) tree_cont<-tree_continuous(data = adultMass,phy = primates$phy, model = "OU",n.tree=30,n.cores = 2,track = TRUE) #Print summary statistics summary(tree_cont) sensi_plot(tree_cont) sensi_plot(tree_cont,graphs="sigsq") sensi_plot(tree_cont,graphs="optpar") #Use a different evolutionary model tree_cont2<-tree_continuous(data = adultMass,phy = primates$phy, model = "delta",n.tree=30,n.cores = 2,track = TRUE) summary(tree_cont2) sensi_plot(tree_cont2) }